4.7 Article

Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors

Journal

ENERGY
Volume 127, Issue -, Pages 89-100

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.03.099

Keywords

Gasoline-direct-injection (GDI); Turbulent spray; Spray atomization; Spray dynamics; Injection pressure; Fuel property; Ambient density

Ask authors/readers for more resources

Understanding the governing parameters and dynamics of turbulent spray atomization is essential for the advancement of fuel injection technologies, but no concrete understandings have been derived previously. The current study investigates the governing parameters and dynamics of turbulent spray atomization by experimental observations of near-nozzle spray phenomena using an X-ray imaging technique. The effects of critical injection parameters such as fuel property, injection pressure and ambient density on near-nozzle liquid feature size and velocity distributions were extensively studied using three injection nozzles having different levels of initial flow turbulence and dispersion. Based on the results, the governing parameters and dynamics of turbulent spray atomization and the issues on the advanced fuel injection control of modern engines were thoroughly discussed. The results showed that fuel and injection pressure effects on spray atomization became insignificant from a critical Weber number which decreased upon the increase in initial flow turbulence and dispersion. The increase in ambient density increased the resultant droplet size at downstream due to the faster deceleration of spray which brought the atomization termination location closer to the nozzle exit. The spray atomization was terminated at the location of ca. 72% exit velocity regardless of the injection condition. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available