4.7 Article

Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials

Journal

ENERGY
Volume 122, Issue -, Pages 94-102

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.01.087

Keywords

Solar energy; Phase change material; Hybrid generation system; Photovoltaic cells; Thermoelectric generator

Funding

  1. National Natural Science Foundation of China [51336003]

Ask authors/readers for more resources

Since the influence of temperature on the conversion efficiencies of photovoltaic (PV) cells and thermoelectric (TE) generators are totally different and opposite, the system operating temperature becomes a key parameter which significantly determines the utilization efficiency of the common PV-TE system on solar energy. In order to make the PV-TE system obtain higher energy utilization efficiency, phase change material (PCM) is incorporated to construct a novel PV-PCM-TE hybrid system to maintain the system operating at the ideal working temperature. The performance of such a novel hybrid system is experirnentally studied corresponding to a number of practical working conditions. The temperature, efficiency, and output power of the hybrid system are compared with those of the pure PV system under the same circumstance. The effects of the optical concentrations ratio and cooling approaches on the conversion efficiency of the hybrid system are experimentally investigated. The whole conversion efficiencies of the hybrid system incorporated with TE generators with different values of dimensionless thermoelectric coefficient (ZT) are discussed. The present work reveals that such a hybrid system possesses a promising potential on the full-spectrum utilization of solar energy. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available