4.5 Article

Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid

Journal

ENERGIES
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/en10040417

Keywords

model predictive control; secondary frequency control; system parameter uncertainties; stand-alone microgrid

Categories

Funding

  1. Incheon National University

Ask authors/readers for more resources

Model predictive control (MPC) has been widely studied for regulating frequency in stand-alone microgrids (MGs), owing to the advantages of MPC such as fast response and robustness against the parameter uncertainties. Understanding the impacts of system parameters on the control performance of MPC could be useful for the designing process of the controller to achieve better performance. This study analyzes the impact of system parameters on the control performance of MPC for frequency regulation in a stand-alone MG. The typical stand-alone MG, which consists of a diesel engine generator, an energy storage system (ESS), a wind turbine generator, and a load, is considered in this study. The diesel engine generator is in charge of primary frequency control whereas the ESS is responsible for secondary frequency control. The stand-alone MG is linearized to obtain the dynamic model that is used for designing MPC-based secondary frequency control. The robustness of MPC against the variation of system parameters is also analyzed in this study. A comparison study of MPC and proportional-integral (PI) control is presented. Simulation results show that MPC has a faster response time and lower overshoot compared to PI control. In addition, the robustness of MPC against the system uncertainties is stronger than conventional PI control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available