4.5 Article

Exploring Marine Energy Potential in the UK Using a Whole Systems Modelling Approach

Journal

ENERGIES
Volume 10, Issue 9, Pages -

Publisher

MDPI AG
DOI: 10.3390/en10091251

Keywords

wave energy; tidal stream energy; whole systems modelling; economics

Categories

Funding

  1. ETI
  2. EPSRC RCUK Energy program for the Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE) [EP/J500847/1]

Ask authors/readers for more resources

The key market drivers for marine energy are to reduce carbon emissions, and improve the security and sustainability of supply. There are other technologies that also meet these requirements, and therefore the marine energy market is dependent on the technology being cost effective, and competitive. The potential UK wave and tidal stream energy market is assessed using ETI's energy systems modelling environment (ESME) which uses a multi-vector approach including energy generation, demand, heat, transport, and infrastructure. This is used to identify scenarios where wave and tidal energy form part of the least-cost energy system for the UK by 2050, and will assess what Levelised Cost of Energy (LCOE) reductions are required to improve the commercialization rate. The results indicate that an installed capacity of 4.9 GW of wave and 2.5 GW of tidal stream could be deployed by 2050 if the LCOE is within 4.5 and 7 p/kWh for each respective technology. If there is a step reduction to the LCOE of wave energy, however, a similar capacity of 5 GW could be deployed by 2050 at a LCOE of 11 p/kWh.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available