3.8 Proceedings Paper

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3445814.3446749

Keywords

Bulk Bitwise Operations; Processing-in-Memory; DRAM

Funding

  1. Semiconductor Research Corporation

Ask authors/readers for more resources

SIMDRAM is a flexible general-purpose processing-with-DRAM framework that supports the efficient implementation of complex operations and user-defined operations. By utilizing a control unit inside the memory controller, SIMDRAM manages the computation of operations from start to end, providing efficiency and flexibility.
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations. In this paper, we propose SIMDRAM, a flexible general-purpose processing-using-DRAM framework that (1) enables the efficient implementation of complex operations, and (2) provides a flexible mechanism to support the implementation of arbitrary user-defined operations. The SIMDRAM framework comprises three key steps. The first step builds an efficient MAJ/NOT representation of a given desired operation. The second step allocates DRAM rows that are reserved for computation to the operation's input and output operands, and generates the required sequence of DRAM commands to perform the MAJ/NOT implementation of the desired operation in DRAM. The third step uses the SIMDRAM control unit located inside the memory controller to manage the computation of the operation from start to end, by executing the DRAM commands generated in the second step of the framework. We design the hardware and ISA support for SIMDRAM framework to (1) address key system integration challenges, and (2) allow programmers to employ new SIMDRAM operations without hardware changes. We evaluate SIMDRAM for reliability, area overhead, throughput, and energy efficiency using a wide range of operations and seven real-world applications to demonstrate SIMDRAM's generality. Our evaluations using a single DRAM bank show that (1) over 16 operations, SIMDRAM provides 2.0x the throughput and 2.6x the energy efficiency of Ambit, a state-of-the-art processing-using-DRAM mechanism; (2) over seven real-world applications, SIMDRAM provides 2.5x the performance of Ambit. Using 16 DRAM banks, SIMDRAM provides (1) 88x and 5.8x the throughput, and 257x and 31x the energy efficiency, of a CPU and a high-end GPU, respectively, over 16 operations; (2) 21x and 2.1x the performance of the CPU and GPU, over seven real-world applications. SIMDRAM incurs an area overhead of only 0.2% in a high-end CPU.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available