4.2 Article

Shapley Effects for Global Sensitivity Analysis: Theory and Computation

Journal

SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION
Volume 4, Issue 1, Pages 1060-1083

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/15M1048070

Keywords

Shapley value; computer experiments; global sensitivity

Funding

  1. National Science Foundation [CMMI-1068473]
  2. GOALI sponsor Simio LLC

Ask authors/readers for more resources

Variance-based global sensitivity analysis decomposes the variance of the output of a computer model, resulting from uncertainty about the model's inputs, into variance components associated with each input's contribution. The two most common variance-based sensitivity measures, the first-order effects and the total effects, may fail to sum to the total variance. They are often used together in sensitivity analysis, because neither of them adequately deals with interactions in the way the inputs affect the output. Therefore Owen proposed an alternative sensitivity measure, based on the concept of the Shapley value in game theory, and showed it always sums to the correct total variance if inputs are independent. We analyze Owen's measure, which we call the Shapley effect, in the case of dependent inputs. We show empirically how the first-order and total effects, even when used together, may fail to appropriately measure how sensitive the output is to uncertainty in the inputs when there is probabilistic dependence or structural interaction among the inputs. Because they involve all subsets of the inputs, Shapley effects could be expensive to compute if the number of inputs is large. We propose a Monte Carlo algorithm that makes accurate approximation of Shapley effects computationally affordable, and we discuss efficient allocation of the computation budget in this algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available