4.7 Article

Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos

Journal

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Volume 122, Issue 3, Pages 341-353

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2015.09.005

Keywords

Wireless capsule endoscopy (WCE); Bleeding detection; Support vector machine; Normalized Gray Level; Co-Occurrence Matrix

Ask authors/readers for more resources

Background and objective: Wireless Capsule Endoscopy (WCE) can image the portions of the human gastrointestinal tract that were previously unreachable for conventional endoscopy examinations. A major drawback of this technology is that a large volume of data are to be analyzed in order to detect a disease which can be time-consuming and burdensome for the clinicians. Consequently, there is a dire need of computer-aided disease detection schemes to assist the clinicians. In this paper, we propose a real-time, computationally efficient and effective computerized bleeding detection technique applicable for WCE technology. Methods: The development of our proposed technique is based on the observation that characteristic patterns appear in the frequency spectrum of the WCE frames due to the presence of bleeding region. Discovering these discriminating patterns, we develop a texture-feature-descriptor-based-algorithm that operates on the Normalized Gray Level Co-occurrence Matrix (NGLCM) of the magnitude spectrum of the images. A new local texture descriptor called difference average that operates on NGLCM is also proposed. We also perform statistical validation of the proposed scheme. Results: The proposed algorithm was evaluated using a publicly available WCE database. The training set consisted of 600 bleeding and 600 non-bleeding frames. This set was used to train the SVM classifier. On the other hand, 860 bleeding and 860 non-bleeding images were selected from the rest of the extracted images to form the test set. The accuracy, sensitivity and specificity obtained from our method are 99.19%, 99.41% and 98.95% respectively which are significantly higher than state-of-the-art methods. In addition, the low computational cost of our method makes it suitable for real-time implementation. Conclusion: This work proposes a bleeding detection algorithm that employs textural features from the magnitude spectrum of the WCE images. Experimental outcomes backed by statistical validations prove that the proposed algorithm is superior to the existing ones in terms of accuracy, sensitivity, specificity and computational cost. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available