4.4 Article

Development and characterization of a predictive microCT-based non-union model in Fischer F344 rats

Journal

ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY
Volume 142, Issue 4, Pages 579-590

Publisher

SPRINGER
DOI: 10.1007/s00402-020-03680-4

Keywords

Fracture healing; Delayed union; Non-union; microCT; Osteotomy

Funding

  1. AO Foundation

Ask authors/readers for more resources

This study aimed to develop and characterize a rat non-union model using internal plate fixation and microCT evaluation. The results showed that microCT could accurately predict bone formation capacity at early time points, and that reducing plate thickness improved bone healing.
Introduction Non-unions remain a clinical problem and are characterised by the failure to heal after a defined period of time. Current preclinical non-union models apply a wide variety of techniques to diminish intrinsic healing potential deviating from the clinical situation. The aim of this study was to develop and characterise a non-union model in rats using internal plate fixation without the need for additional healing insults, whereby bone healing can be longitudinally assessed using microCT. It was hypothesized that healing/non-unions can be accurately predicted at early time points by microCT. Materials and methods Female, skeletally mature Fischer F344 rats received a 2 mm or 1 mm femoral osteotomy, stabilized with either a 2 mm thick plate or a 1.25 mm thick plate. Healing was monitored by microCT over 14 weeks and histological analysis at euthanasia. The mechanical environment was characterised using finite element (FE) modelling and biomechanical testing. Results The majority of animals receiving the 2 mm thick plate displayed poor healing responses in both the 2 mm and 1 mm defect size groups. Bone and cartilage formation were markedly improved using the 1.25 mm thick plate. MicroCT could accurately predict bone forming capacity at early time points (3-4 weeks). Conclusions The 2 mm thick plating system confers poor healing responses in female Fischer F344 rats, comparable to atrophic non-unions. By reducing plate thickness to increase interfragmentary strain within the defect site healing is improved, leading to borderline healing situations or increased abundance of cartilage tissue present in the defect site with ultimate failure to bridge the defect (hypertrophic non-union). Furthermore, microCT can reliably identify delayed/non-healing animals within 4 weeks, thereby allowing their selective targeting for the testing of novel, clinically relevant treatment strategies in different clinical situations aimed at restoring impaired bone healing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available