4.5 Article Proceedings Paper

Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks

Journal

COMPUTER GRAPHICS FORUM
Volume 34, Issue 5, Pages 13-23

Publisher

WILEY
DOI: 10.1111/cgf.12693

Keywords

-

Funding

  1. ERC [307047]
  2. European Research Council (ERC) [307047] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

In this paper, we propose a generalization of convolutional neural networks (CNN) to non-Euclidean domains for the analysis of deformable shapes. Our construction is based on localized frequency analysis (a generalization of the windowed Fourier transform to manifolds) that is used to extract the local behavior of some dense intrinsic descriptor, roughly acting as an analogy to patches in images. The resulting local frequency representations are then passed through a bank of filters whose coefficient are determined by a learning procedure minimizing a task-specific cost. Our approach generalizes several previous methods such as HKS, WKS, spectral CNN, and GPS embeddings. Experimental results show that the proposed approach allows learning class-specific shape descriptors significantly outperforming recent state-of-the-art methods on standard benchmarks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available