4.7 Article

Efficient treatment of ammonia-nitrogen contaminated waters by nano zero-valent iron/zeolite composite

Journal

CHEMOSPHERE
Volume 287, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131990

Keywords

Nano zero-valent iron (nZVI); Zeolite (Z); Removal efficiency; Isotherms; Ammonia-nitrogen (NH+ N)

Ask authors/readers for more resources

The study focused on developing a magnetic nanoscale zero-valent iron/zeolite (nZVI/Z) composite for efficient removal of ammonia-nitrogen (NH4+-N) from water. Batch experiments revealed optimal conditions and removal mechanisms for effective NH4+-N removal with nZVI/Z.
The aim of the present study is developing a magnetic nanoscale zero-valent iron/zeolite (nZVI/Z) composite towards the efficient removal of ammonia-nitrogen (NH4+-N) from aqueous solutions. Series of batch experiments were conducted to investigate the effect of different factors on the removal efficiency, including pH effect, aerobic/anaerobic, NH4+-N initial concentration, and temperature. The mixing mass ratio of nZVI/Z was optimized to reach the optimal ratio (0.25 g nZVI: 0.75 g zeolite), corresponding to the best removal efficiency of 85.7% after 120 min of reaction. Results revealed that nZVI/Z is efficient for NH4+-N removal from water at a wide pH range (3.0-10.0), with superiority to the neutral conditions. Moreover, aerobic ambient and normal temperature of 25 degrees C were the optimal conditions for the removal process of NH4+-N. Removal mechanisms involved electrostatic attraction, ion exchange, and adsorption. Generally, nZVI/Z has great potential towards the practical applications of NH4+-N removal from water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available