4.0 Article

Using Direct Numerical Simulation of Pore-Level Events to Improve Pore-Network Models for Prediction of Residual Trapping of CO2

Journal

FRONTIERS IN WATER
Volume 3, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/frwa.2021.710160

Keywords

pore-network (PN) modeling; lattice-boltzmann; residual trapping; CO2 storage and sequestration; pore-scale modeling

Funding

  1. Center for Geologic Storage of CO2, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0C12504]
  2. National Science Foundation [OCI-0725070, ACI-1238993]
  3. State of Illinois
  4. National Geospatial-Intelligence Agency

Ask authors/readers for more resources

Researchers have developed a new pore-level flow model using lattice-Boltzmann method for direct numerical simulation in the pore-network modeling of imbibition. By simulating typical idealized pore-network configurations and evaluating the interface evolution and local capillary pressure, modified equations for the local threshold capillary pressure of pore elements were obtained. The modified model shows improved performance in predicting the saturation of residual trapped CO2.
Direct numerical simulation and pore-network modeling are common approaches to study the physics of two-phase flow through natural rocks. For assessment of the long-term performance of geological sequestration of CO2, it is important to model the full drainage-imbibition cycle to provide an accurate estimate of the trapped CO2. While direct numerical simulation using pore geometry from micro-CT rock images accurately models two-phase flow physics, it is computationally prohibitive for large rock volumes. On the other hand, pore-network modeling on networks extracted from micro-CT rock images is computationally efficient but utilizes simplified physics in idealized geometric pore elements. This study uses the lattice-Boltzmann method for direct numerical simulation of CO2-brine flow in idealized pore elements to develop a new set of pore-level flow models for the pore-body filling and snap-off events in pore-network modeling of imbibition. Lattice-Boltzmann simulations are conducted on typical idealized pore-network configurations, and the interface evolution and local capillary pressure are evaluated to develop modified equations of local threshold capillary pressure of pore elements as a function of shape factor and other geometrical parameters. The modified equations are then incorporated into a quasi-static pore-network flow solver. The modified model is applied on extracted pore-network of sandstone samples, and saturation of residual trapped CO2 is computed for a drainage-imbibition cycle. The modified model yields different statistics of pore-level events compared with the original model; in particular, the occurrence of snap-off in pore-throats is reduced resulting in a more frontal displacement pattern along the main injection direction. Compared to the original model, the modified model is in closer agreement with the residual trapped CO2 obtained from core flow experiments and direct numerical simulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available