4.7 Article Proceedings Paper

Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction

Journal

CHINESE JOURNAL OF CATALYSIS
Volume 43, Issue 2, Pages 303-315

Publisher

ELSEVIER
DOI: 10.1016/S1872-2067(21)63818-4

Keywords

Graphdiyne; Co9S8; S-Scheme heterojunctions; Photocatalytic hydrogen evolution

Funding

  1. National Natural Science Foundation of China [22062001]

Ask authors/readers for more resources

Graphdiyne (GDY), a novel two-dimensional carbon hybrid material, has attracted significant attention due to its unique and excellent properties. This study reports new progress in the preparation of a composite material, Co9S8-GDY-CuI, using CuI powder as a catalytic material and a facile hydrothermal method. The Co9S8-GDY-CuI exhibited hydrogen production activity 10.29 times higher than that of pure GDY in the sensitization system. Characterization techniques provided evidence for the successful preparation of the material and its superior photocatalytic activity. A possible reaction mechanism and the effects of Co9S8 nanoparticles were also discussed.
Graphdiyne (GDY, g-CnH2n-2), a novel two-dimensional carbon hybrid material, has attracted significant attention owing to its unique and excellent properties. As a new type of carbon material, GDY has a layered structure and can be used in the field of photocatalytic water splitting. Therefore, herein, new progress in the preparation of graphene using CuI powder as a catalytic material and the combination of a facile hydrothermal method to prepare a new composite material, Co9S8-GDY-CuI, is reported. The hydrogen production activity of Co9S8-GDY-CuI in the sensitization system reached 1411.82 mu mol g(-1) h(-1), which is 10.29 times that of pure GDY. A series of characterization techniques were used to provide evidence for the successful preparation of the material and its superior photocatalytic activity. Raman spectroscopy showed that the material contains acetylenic bonds, and the X-ray photoelectron spectroscopy carbon fitting peaks indicated the presence of C-C(sp(2)) and C-C(sp), further demonstrating that GDY was successfully prepared. A possible reaction mechanism was proposed by making use of UV-visible diffuse reflectance and Mott-Schottky analyses. The results showed that a double S-scheme heterojunction was constructed between the samples, which effectively accelerated the separation and transfer of electrons. In addition, the introduction of Co9S8 nanoparticles greatly improved the visible light absorption capacity of Co9S8-GDY-CuI. Photoluminescence spectroscopy and related electrochemical characterization further proved that recombination of the electron-hole pairs in the composite material was effectively suppressed. (C) 2022, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available