4.5 Article

ROMK channels are inhibited in the aldosterone-sensitive distal nephron of renal tubule Nedd4-2-deficient mice

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 322, Issue 1, Pages F55-F67

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00306.2021

Keywords

cortical collecting duct; distal convoluted tubule; epithelial Na+ channel; renal outer medullary K+ channel; with no lysine kinase 1

Funding

  1. National Institute of Diabetes and Digestive and Kidney Diseases [DK54983, DK115366]

Ask authors/readers for more resources

This study demonstrates that the absence of Nedd4-2 decreases ROMK channel activity and increases ENaC activity in the aldosterone-sensitive distal nephron. Furthermore, high dietary K+ intake fails to stimulate ROMK but robustly increases ENaC activity in Nedd4-2-deficient mice.
We used whole cell recording to examine the renal outer medullary K+ channel (ROMK or Kir1.1) and epithelial Na+ channel (ENaC) in the late distal convoluted tubule (DCT2)/initial connecting tubule (iCNT) and in the cortical collecting duct (CCD) of kidney tubule-specific neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) knockout mice (Ks-Nedd4-2 KO) and floxed neural precursor cell-expressed developmentally downregulated 4-like (Nedd4l) mice (control). Tertiapin Q (TPNQ)-sensitive K+ currents (ROMK) were smaller in both the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on a normal diet than in control mice. Neither high dietary salt intake nor low dietary salt intake had a significant effect on ROMK activity in the DCT2/iCNT and CCD of control and Ks-Nedd4-2 KO mice. In contrast, high dietary K+ intake (HK) increased, whereas low dietary K+ intake (LK) decreased TPNQ-sensitive K+ currents in floxed Nedd4l mice. However, the effects of dietary K+ intake on ROMK channel activity were absent in Ks-Nedd4-2 KO mice since neither HK nor LK significantly affected TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD. Moreover, TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on HK were similar to those of control mice on LK. Amiloride-sensitive Na+ currents in the DCT2/iCNT and CCD were significantly higher in Ks-Nedd4-2 KO mice than in floxed Nedd4l mice on a normal K+ diet. HK increased ENaC activity of the DCT2/iCNT only in control mice, but HK stimulated ENaC of the CCD in both control and KsNedd4-2 KO mice. Moreover, the HK-induced increase in amiloride-sensitive Na+ currents was larger in Ks-Nedd4-2 KO mice than in control mice. Deletion of Nedd4-2 increased with no lysine kinase 1 expression and abolished HK-induced inhibition of with no lysine kinase 1. We conclude that deletion of Nedd4-2 increases ENaC activity but decreases ROMK activity in the aldosterone-sensitive distal nephron and that HK fails to stimulate ROMK, but robustly increases ENaC activity in the CCD of Nedd4-2-deficient mice. NEW & NOTEWORTHY We demonstrate that renal outer medullary K+ (ROMK) channel activity is inhibited in the late distal convoluted tubule/initial connecting tubule and cortical collecting duct of neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2)-deficient mice. Also, deletion of Nedd4-2 abolishes the stimulatory effect of dietary K+ intake on ROMK. The lack of high K+-induced stimulation of ROMK is associated with the absence of high K+-induced inhibition of with no lysine kinase 1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available