4.8 Article

Adhesion mechanisms of curli subunit CsgA to abiotic surfaces

Journal

SCIENCE ADVANCES
Volume 2, Issue 11, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1600998

Keywords

-

Funding

  1. Office of Naval Research Young Investigator Program [N00014-15-1-2701]
  2. Ryan Fellowship
  3. Northwestern University International Institute for Nanotechnology
  4. Northwestern University MSTP (Medical Scientist Training Program) NIH [T32GM008152]
  5. Northwestern University High Performance Computing Center
  6. Department of Defense Supercomputing Resource Center

Ask authors/readers for more resources

Curli fibers are functional amyloids that play a key role in biofilm structure and adhesion to various surfaces. Strong bioinspired adhesives comprising curli fibers have recently been created; however, the mechanisms curli uses to attach onto abiotic surfaces are still uncharacterized. Toward a materials-by-design approach for curli-based adhesives and multifunctional materials, we examine curli subunit adsorption onto graphene and silica surfaces through atomistic simulation. We find that both structural features and sequence influence adhesive strength, enabling the CsgA subunit to adhere strongly to both polar and nonpolar surfaces. Specifically, flexible regions facilitate adhesion to both surfaces, charged and polar residues (Arg, Lys, and Gln) enable strong interactions with silica, and six-carbon aromatic rings (Tyr and Phe) adsorb strongly to graphene. We find that adsorption not only lowers molecular mobility but also leads to loss of secondary structure, factors that must be well balanced for effective surface attachment. Both events appear to propagate through the CsgA structure as correlated motion between clusters of residues, often H-bonded between rows on adjacent beta strands. To quantify this, we present a correlation analysis approach to detecting collective motion between residue groups. We find that certain clusters of residues have a higher impact on the stability of the rest of the protein structure, often polar and bulky groups within the helix core. These findings lend insight into bacterial adhesion mechanisms and reveal strategies for theory-driven design of engineered curli fibers that harness point mutations and conjugates for stronger adhesion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available