4.8 Article

Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials

Journal

SCIENCE ADVANCES
Volume 2, Issue 10, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1601428

Keywords

-

Funding

  1. National Research Foundation of Korea - Korean government (Ministry of Science, ICT and Future Planning) [NRF-2016R1A3B1908431, NRF-2015R1A2A1A10055620]

Ask authors/readers for more resources

Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLEDs fabricated using a solution process. We report very efficient solution-processed simple-structured small-molecule OLEDs that use novel universal electron-transporting host materials based on tetraphenylsilane with pyridine moieties. These materials have wide band gaps, high triplet energy levels, and good solution processabilities; they provide balanced charge transport in a mixed-host emitting layer. Orange-red (similar to 97.5 cd/A, similar to 35.5% photons per electron), green (similar to 101.5 cd/A, similar to 29.0% photons per electron), and white (similar to 74.2 cd/A, similar to 28.5% photons per electron) phosphorescent OLEDs exhibited the highest recorded electroluminescent efficiencies of solution-processed OLEDs reported to date. We also demonstrate a solution-processed flexible solid-state lighting device as a potential application of our devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available