4.8 Article

Ultrasound controlled mechanophore activation in hydrogels for cancer therapy

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2109791119

Keywords

mechanochemistry; hydrogel; ultrasound; reactive oxygen species; cancer therapy

Funding

  1. NIH [5R01CA184091]
  2. Planning Grant of the Cancer Center at Illinois
  3. US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-07ER46471]
  4. Ulsan National Institute of Science Technology [1.200116.01]

Ask authors/readers for more resources

This paper reports an in vitro demonstration of a noninvasive cancer therapy using mechanophore embedded in biocompatible hydrogels to generate reactive oxygen species (ROS) under high-intensity focused ultrasound (HIFU) activation, effectively killing tumor cells. This mechanochemical dynamic therapy (MDT) combines the advantages of mechanophores and HIFU to provide a noninvasive treatment for diverse cancers.
Mechanophores are molecular motifs that respond to mechanical perturbance with targeted chemical reactions toward desirable changes in material properties. A large variety of mechanophores have been investigated, with applications focusing on functional materials, such as strain/stress sensors, nanolithography, and selfhealing polymers, among others. The responses of engineered mechanophores, such as light emittance, change in fluorescence, and generation of free radicals (FRs), have potential for bioimaging and therapy. However, the biomedical applications of mechanophores are not well explored. Herein, we report an in vitro demonstration of an FR-generating mechanophore embedded in biocompatible hydrogels for noninvasive cancer therapy. Controlled by high-intensity focused ultrasound (HIFU), a clinically proven therapeutic technique, mechanophores were activated with spatiotemporal precision to generate FRs that converted to reactive oxygen species (ROS) to effectively kill tumor cells. The mechanophore hydrogels exhibited no cytotoxicity under physiological conditions. Upon activation with HIFU sonication, the therapeutic efficacies in killing in vitro murine melanoma and breast cancer tumor cells were comparable with lethal doses of H2O2. This process demonstrated the potential for mechanophoreintegrated HIFU combination as a noninvasive cancer treatment platform, named mechanochemical dynamic therapy (MDT). MDT has two distinct advantages over other noninvasive cancer treatments, such as photodynamic therapy (PDT) and sonodynamic therapy (SDT). 1) MDT is ultrasound based, with larger penetration depth than PDT. 2) MDT does not rely on sonosensitizers or the acoustic cavitation effect, both of which are necessary for SDT. Taking advantage of the strengths of mechanophores and HIFU, MDT can provide noninvasive treatments for diverse cancer types.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available