3.8 Review

When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ss(1,3)-Glucan Exposure in Candida albicans

Journal

FRONTIERS IN FUNGAL BIOLOGY
Volume 3, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/ffunb.2022.842501

Keywords

unmasking; Candida; cell wall; signal transduction; MAP kinase; -glucan

Categories

Funding

  1. NIH [R01AI153599]
  2. National Natural Science Foundation of China [82001678]
  3. China Postdoctoral Science Foundation [2020M672065]
  4. Fundamental Research Funds of Shandong University [21510072064024]

Ask authors/readers for more resources

The exposure of (1,3)-glucan plays a crucial role in anti-fungal immunity, and changes in the levels of surface exposed (1,3)-glucan can be induced by environmental stimuli and stressors within the host. Understanding the signal transduction cascades that regulate the changes in (1,3)-glucan exposure is critical for future therapeutic development.
Candida spp. are an important source of systemic and mucosal infections in immune compromised populations. However, drug resistance or toxicity has put limits on the efficacy of current antifungals. The C. albicans cell wall is considered a good therapeutic target due to its roles in viability and fungal pathogenicity. One potential method for improving antifungal strategies could be to enhance the detection of fungal cell wall antigens by host immune cells. (1,3)-glucan, which is an important component of fungal cell walls, is a highly immunogenic epitope. Consequently, multiple host pattern recognition receptors, such as dectin-1, complement receptor 3 (CR3), and the ephrin type A receptor A (EphA2) are capable of recognizing exposed (unmasked) (1,3)-glucan moieties on the cell surface to initiate an anti-fungal immune response. However, (1,3)-glucan is normally covered (masked) by a layer of glycosylated proteins on the outer surface of the cell wall, hiding it from immune detection. In order to better understand possible mechanisms of unmasking (1,3)-glucan, we must develop a deeper comprehension of the pathways driving this phenotype. In this review, we describe the medical importance of (1,3)-glucan exposure in anti-fungal immunity, and highlight environmental stimuli and stressors encountered within the host that are capable of inducing changes in the levels of surface exposed (1,3)-glucan. Furthermore, particular focus is placed on how signal transduction cascades regulate changes in (1,3)-glucan exposure, as understanding the role that these pathways have in mediating this phenotype will be critical for future therapeutic development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available