4.5 Article

Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation

Journal

NATURE MICROBIOLOGY
Volume 1, Issue 7, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMICROBIOL.2016.84

Keywords

-

Categories

Funding

  1. National Institutes of Health [AI083359, GM100486]
  2. Welch Foundation [I-1704]
  3. Burroughs Wellcome Fund

Ask authors/readers for more resources

The linear ubiquitin chain assembly complex (LUBAC) is a multimeric E3 ligase that catalyses M1 or linear ubiquitination of activated immune receptor signalling complexes (RSCs). Mutations that disrupt linear ubiquitin assembly lead to complex disease pathologies including immunodeficiency and autoinflammation in both humans and mice, but microbial toxins that target LUBAC function have not yet been discovered. Here, we report the identification of two homologous Shigella flexneri type III secretion system effector E3 ligases IpaH1.4 and IpaH2.5, which directly interact with LUBAC subunit Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1L) and conjugate K48-linked ubiquitin chains to the catalytic RING-between-RING domain of HOIL-1-interacting protein (HOIP). Proteasomal degradation of HOIP leads to irreversible inactivation of linear ubiquitination and blunting of NF-kappa B nuclear translocation in response to tumour-necrosis factor (TNF), IL-1 beta and pathogen-associated molecular patterns. Loss of function studies in mammallian cells in combination with bacterial genetics explains how Shigella evades a broad spectrum of immune surveillance systems by cooperative inhibition of receptor ubiquitination and reveals the critical importance of LUBAC in host defence against pathogens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available