4.6 Article

Cellulose-reinforced poly(ethylene-co-vinyl acetate)-supported Ag nanoparticles with excellent catalytic properties: synthesis of thioamides using the Willgerodt-Kindler reaction

Journal

RSC ADVANCES
Volume 12, Issue 11, Pages 6659-6667

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ra09225a

Keywords

-

Ask authors/readers for more resources

Cellulose was extracted from rice straw and a highly active solid-supported catalytic model was developed in this study. By conjugating with poly(ethylene-co-vinyl acetate) (PEVA) and inserting silver nanoparticles, a composite catalyst was successfully fabricated. The hybrid catalyst exhibited excellent reaction yields in the Willgerodt-Kindler reaction and showed high stability and recyclability.
Cellulose, a bio-derived polymer, is widely used in food packaging, dye removal, coatings, and solid-supported catalysis. Heterogeneous catalysts play a critical role in environmental remediation. In this context, the demand for green and cost-effective catalysts has rapidly increased. In this study, cellulose was extracted from rice straw, and a highly active solid-supported catalytic model was developed. First, cellulose was conjugated with poly(ethylene-co-vinyl acetate) (PEVA), and then Ag nanoparticles (AgNPs) were inserted into the cellulose-PEVA composite. The process involved the reduction of AgNPs in the presence of sodium borohydride. The fabricated hybrid catalyst was characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and powder X-ray diffraction. Thereafter, the obtained hybrid was used as a catalyst for the Willgerodt-Kindler reaction of aromatic aldehydes, amines, and S-8 to synthesize thioamides with excellent yields. The developed catalytic system exhibited high stability and recyclability. Moreover, the mechanical properties of the hybrid catalyst were evaluated using tensile strength and impact tests. RGB analysis of digital images was also performed to investigate the primary components of the catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available