4.6 Article

Defects in perovskite-halides and their effects in solar cells

Journal

NATURE ENERGY
Volume 1, Issue -, Pages 1-13

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NENERGY.2016.149

Keywords

-

Funding

  1. European Union of the MESO project [604032]

Ask authors/readers for more resources

Solar cells based on perovskite-halide light absorbers have a unique set of characteristics that could help alleviate the global dependence on fossil fuels for energy generation. They efficiently convert sunlight into electricity using Earth-abundant raw materials processed from solution at low temperature. Thus, they offer potential for cost reductions compared with or in combination with other photovoltaic technologies. Nevertheless, to fully exploit the potential of perovskite-halides, several important challenges must be overcome. Given the nature of the materials - relatively soft ionic solids - one of these challenges is the understanding and control of their defect structures. Currently, such understanding is limited, restricting the power conversion efficiencies of these solar cells from reaching their thermodynamic limit. This Review describes the state of the art in the understanding of the origin and nature of defects in perovskite-halides and their impact on carrier recombination, charge-transport, band alignment, and electrical instability, and provides a perspective on how to make further progress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available