4.5 Review

A New Wave of Industrialization of PHA Biopolyesters

Journal

BIOENGINEERING-BASEL
Volume 9, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/bioengineering9020074

Keywords

biopolymers; commercialization; copolyester; homopolyester; polyhydroxyalkanoate

Ask authors/readers for more resources

The increasing use of plastics and their negative impact on the environment has led to the development of renewable and biodegradable materials. Polyhydroxyalkanoates (PHAs), a class of biopolymers synthesized by microorganisms, have properties similar to petrochemical plastics but can biodegrade in various environments. The emergence of the PHA industry has attracted the attention of chemical companies, start-ups, and brand owners who are now producing and utilizing PHAs in various applications. This commercialization wave of PHAs holds great potential in reducing plastic pollution and fighting climate change.
The ever-increasing use of plastics, their fossil origin, and especially their persistence in nature have started a wave of new innovations in materials that are renewable, offer the functionalities of plastics, and are biodegradable. One such class of biopolymers, polyhydroxyalkanoates (PHAs), are biosynthesized by numerous microorganisms through the conversion of carbon-rich renewable resources. PHA homo- and heteropolyesters are intracellular products of secondary microbial metabolism. When isolated from microbial biomass, PHA biopolymers mimic the functionalities of many of the top-selling plastics of petrochemical origin, but biodegrade in soil, freshwater, and marine environments, and are both industrial- and home-compostable. Only a handful of PHA biopolymers have been studied in-depth, and five of these reliably match the desired material properties of established fossil plastics. Realizing the positive attributes of PHA biopolymers, several established chemical companies and numerous start-ups, brand owners, and converters have begun to produce and use PHA in a variety of industrial and consumer applications, in what can be described as the emergence of the PHA industry. While this positive industrial and commercial relevance of PHA can hardly be described as the first wave in its commercial development, it is nonetheless a very serious one with over 25 companies and start-ups and 30+ brand owners announcing partnerships in PHA production and use. The combined product portfolio of the producing companies is restricted to five types of PHA, namely poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), even though PHAs as a class of polymers offer the potential to generate almost limitless combinations of polymers beneficial to humankind. To date, by varying the co-monomer type and content in these PHA biopolymers, their properties emulate those of the seven top-selling fossil plastics, representing 230 million t of annual plastics production. Capacity expansions of 1.5 million t over the next 5 years have been announced. Policymakers worldwide have taken notice and are encouraging industry to adopt biodegradable and compostable material solutions. This wave of commercialization of PHAs in single-use and in durable applications holds the potential to make the decisive quantum leap in reducing plastic pollution, the depletion of fossil resources, and the emission of greenhouse gases and thus fighting climate change. This review presents setbacks and success stories of the past 40 years and the current commercialization wave of PHA biopolymers, their properties, and their fields of application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available