4.7 Article

Composition dependent polymorphism and superconductivity in Y3+x{Rh,Ir}4Ge13-x

Journal

DALTON TRANSACTIONS
Volume 51, Issue 12, Pages 4734-4748

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2dt00167e

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [325295543]
  2. DFG [422219907]

Ask authors/readers for more resources

This article investigates the polymorphism and structural relationships of compounds from the Y3+xRh4Ge13-x and Y3+xIr4Ge13-x series. It is found that these compounds are weakly-coupled superconductors with low thermal conductivity and small Seebeck coefficients. Additionally, Y3Rh4Ge13 undergoes a first-order phase transition at 177 K, possibly related to a charge density wave.
Polymorphism is observed in the Y3+xRh4Ge13-x series. The decrease of Y-content leads to the transformation of the primitive cubic Y3.6Rh4Ge12.4 [x = 0.6, space group Pm3n, a = 8.96095(9) angstrom], revealing a strongly disordered structure of the Yb3Rh4Sn13 Remeika prototype, into a body-centred cubic structure [La3Rh4Sn13 structure type, space group I4(1)32, a = 17.90876(6) angstrom] for x = 0.4 and further into a tetragonal arrangement (Lu3Ir4Ge13 structure type, space group I4(1)/amd, a = 17.86453(4) angstrom, a = 17.91076(6) angstrom) for the stoichiometric (i.e. x = 0) Y3Rh4Ge13. Analogous symmetry lowering is found within the Y3+xIr4Ge13-x series, where the compound with Y-content x = 0.6 is crystallizing with La3Rh4Sn13 structure type [a = 17.90833(8) angstrom] and the stoichiometric Y3Ir4Ge13 is isostructural with the Rh-analogue [a = 17.89411(9) angstrom, a = 17.9353(1) angstrom]. The structural relationships of these derivatives of the Remeika prototype are discussed. Compounds from the Y3+xRh4Ge13-x series are found to be weakly-coupled BCS-like superconductors with T-c = 1.25, 0.43 and 0.6, for x = 0.6, 0.4 and 0, respectively. They also reveal low thermal conductivity (<1.5 W K-1 m(-1) in the temperature range 1.8-350 K) and small Seebeck coefficients. The latter are common for metallic systems. Y3Rh4Ge13 undergoes a first-order phase transition at T-f = 177 K, with signatures compatible to a charge density wave scenario. The electronic structure calculations confirm the instability of the idealized Yb3Rh4Sn13-like structural arrangements for Y3Rh4Ge13 and Y3Ir4Ge13.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available