4.6 Article

Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes

Journal

PRX QUANTUM
Volume 3, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PRXQuantum.3.010329

Keywords

-

Ask authors/readers for more resources

This paper presents a comprehensive architectural analysis for a fault-tolerant quantum computer based on cat codes combined with outer quantum error-correcting codes. The hardware proposed is a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Through detailed error analysis and numerical simulations, realistic estimates of the physical error rates and overheads needed to run fault-tolerant quantum algorithms are obtained. The study finds that with around 1000 superconducting circuit components, it is possible to construct a fault-tolerant quantum computer capable of running circuits currently intractable for classical computers.
We present a comprehensive architectural analysis for a proposed fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated physical parameters for the hardware, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits, which are currently intractable for classical computers. Hardware with 18 000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available