3.8 Article

Tentative Application of a Streamlined Protocol to Determine Organ-Specific Regulations of Deiodinase 1 and Dehalogenase Activities as Readouts of the Hypothalamus-Pituitary-Thyroid-Periphery-Axis

Journal

FRONTIERS IN TOXICOLOGY
Volume 4, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/ftox.2022.822993

Keywords

thyroid hormone system; deiodinase; dehalogenase; biomarker; activity assay; iodine status; regulatory testing; endocrine disruption

Categories

Ask authors/readers for more resources

Animal studies often describe the state of the thyroid hormone axis based on circulating hormone concentrations, ignoring local mechanisms. This study measured deiodinase and iodotyrosine deiodinase activity using a new method and identified organ-specific regulation patterns in different age groups.
In animal studies, both in basic science and in toxicological assessment of potential endocrine disruptors, the state of the thyroid hormone (TH) axis is often described and defined exclusively by the concentrations of circulating THs and TSH. Although it is known that the local, organ-specific effects of THs are also substantially regulated by local mechanisms such as TH transmembrane transport and metabolism of TH by deiodinases, such endpoint parameters of the axis are rarely assessed in these experiments. Currently developed in vitro assays utilize the Sandell-Kolthoff reaction, a photometric method of iodide determination, to test the effect of chemicals on iodotyrosine and iodothyronine deiodinases. Furthermore, this technology offers the possibility to determine the iodine content of various sample types (e.g., urine, ex vivo tissue) in a simple way. Here, we measured deiodinase type 1 and iodotyrosine dehalogenase activity by means of the Sandell-Kolthoff reaction in ex vivo samples of hypo- and hyperthyroid mice of two age groups (young; 3 months and old; 20 months). In thyroid, liver and kidney, organ-specific regulation patterns emerged across both age groups, which, based on this pilot study, may serve as a starting point for a deeper characterization of the TH system in relevant studies in the future and support the development of Integrated Approach for Testing and Assessment (IATA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available