4.6 Article

Defect Tolerance in Methylammonium Lead Triiodide Perovskite

Journal

ACS ENERGY LETTERS
Volume 1, Issue 2, Pages 360-366

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.6b00196

Keywords

-

Funding

  1. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy [DE-AC36-08-GO28308]
  2. Hybrid Perovskite Solar Cell program of the National Center for Photovoltaics - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office
  3. DOE-EERE program at NREL [25786]

Ask authors/readers for more resources

Photovoltaic applications of perovskite semiconductor material systems have generated considerable interest in part because of predictions that primary defect energy levels reside outside the bandgap. We present experimental evidence that this enabling material property is present in the halide-lead perovskite, CH3NH3PbI3 (MAPbI(3)), consistent with theoretical predictions. By performing X-ray photoemission spectroscopy, we induce and track dynamic chemical and electronic transformations in the perovskite. These data show compositional changes that begin immediately with exposure to X-ray irradiation, whereas the predominant electronic structure of the thin film on compact TiO2 appears tolerant to the formation of compensating defect pairs of V-I and V-MA and for a large range of I/Pb ratios. Changing film composition is correlated with a shift of the valence-band maximum only as the halide-lead ratio drops below 2.5. This delay is attributed to the invariance of MAPbI(3) electronic structure to distributed defects that can significantly transform the electronic density of states only when in high concentrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available