4.6 Article

Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

Journal

ACS ENERGY LETTERS
Volume 1, Issue 1, Pages 21-26

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.6b00010

Keywords

-

Funding

  1. Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  2. National Natural Science Foundation of China [91334203, 21376074]
  3. 111 Project of China [B08021]
  4. Chinese Scholarship Council

Ask authors/readers for more resources

Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. Here we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF4- anion relative to the TFSI- anion and the EMI+ cation. A volcano-shaped trend is identified for the capacitance versus the composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. These theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available