4.6 Article

Molecular Characterization of WCK 5222 (Cefepime/Zidebactam)-Resistant Mutants Developed from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate

Journal

MICROBIOLOGY SPECTRUM
Volume 10, Issue 1, Pages -

Publisher

AMER SOC MICROBIOLOGY

Keywords

Pseudomonas aeruginosa; WCK 5222; zidebactam; PBP2

Categories

Funding

  1. National Key Research and Development Project of China [2021YFE0101700, 82061148018]
  2. National Science Foundation of China [32170177, 32170199, 31970680, 31970179, 31870130]
  3. Fundamental Research Funds for the Central Universities [63213121]
  4. Tianjin Municipal Science and Technology Commission [19JCYBJC24700]

Ask authors/readers for more resources

This study found that Pseudomonas aeruginosa developed resistance to WCK 5222, and identified mutations in the zidebactam target protein PBP2 as the major cause of resistance.
WCK 5222 (cefepime/zidebactam) is a beta-lactam/beta-lactamase inhibitor combination that is effective against a broad range of highly drug-resistant bacterial pathogens, including those producing metallo-beta-lactamase. In this study, we isolated a multidrug-resistant Pseudomonas aeruginosa clinical strain that is resistant to a variety of beta-lactam antibiotics and the ceftazidime-avibactam combination. A metallo- beta-lactamase gene bla(DIM-2) was identified on a self-transmissible megaplasmid in the strain, which confers the resistance to beta-lactam antibiotics, leaving WCK 5222 potentially one of the last treatment resorts. In vitro passaging assay combined with whole-genome sequencing revealed mutations in the pbpA gene (encoding the zidebactam target protein PBP2) in the evolved resistant mutants. Among the mutations, a V516M mutation increased the bacterial virulence in a murine acute pneumonia model. Reconstitution of the mutations in the reference strain PAO1 verified their roles in the resistance to zidebactam and revealed their influences on cell morphology in the absence and presence of zidebactam. Microscale thermophoresis (MST) assays demonstrated that the mutations reduced the affinity between PBP2 and zidebactam to various extents. Overall, our results revealed that mutations in the pbpA gene might be a major cause of evolved resistance to WCK 5222 in clinical settings. IMPORTANCE Antibiotic resistance imposes a severe threat on human health. WCK 5222 is a beta-lactam/beta-lactamase inhibitor combination that is composed of cefepime and zidebactam. It is one of the few antibiotics in clinical trials that are effective against multidrug-resistant Pseudomonas aeruginosa, including those producing metallo-beta-lactamases. Understanding the mechanisms and development of bacterial resistance to WCK 5222 may provide clues for the development of strategies to suppress resistant evolvement. In this study, we performed an in vitro passaging assay by using a multidrug-resistant P. aeruginosa clinical isolate. Our results revealed that mutations in the zidebactam target protein PBP2 play a major role in the bacterial resistance to WCK 5222. We further demonstrated that the mutations reduced the affinities between PBP2 and zidebactam and resulted in functional resistance of PBP2 to zidebactam.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available