4.7 Article

Experimental and numerical evaluation of the effect of micro-aeration on the thermal properties of chocolate

Journal

FOOD & FUNCTION
Volume 13, Issue 9, Pages 4993-5010

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1fo04049a

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC)
  2. Nestle PTC York

Ask authors/readers for more resources

This study accurately predicts the temporal and spatial evolution of temperature in chocolate samples using a multiscale finite element model. Experimental and numerical results show that the rate of heat transfer is reduced in micro-aerated chocolate, possibly due to micro-pores acting as thermal barriers.
Thermal properties, such as thermal conductivity, specific heat capacity and latent heat, influence the melting and solidification of chocolate. The accurate prediction of these properties for micro-aerated chocolate products with varying levels of porosity ranging from 0% to 15% is beneficial for understanding and control of heat transfer mechanisms during chocolate manufacturing and food oral processing. The former process is important for the final quality of chocolate and the latter is associated with sensorial attributes, such as grittiness, melting time and flavour. This study proposes a novel multiscale finite element model to accurately predict the temporal and spatial evolution of temperature across chocolate samples. The model is evaluated via heat transfer experiments at temperatures varying from 16 degrees C to 45 degrees C. Both experimental and numerical results suggest that the rate of heat transfer within the micro-aerated chocolate is reduced by 7% when the 15% micro-aerated chocolate is compared to its solid counterpart. More specifically, on average, the thermal conductivity decreased by 20% and specific heat capacity increased by 10% for 15% micro-aeration, suggesting that micro-pores act as thermal barriers to heat flow. The latter trend is unexpected for porous materials and thus the presence of a third phase at the pore's interface is proposed which might store thermal energy leading to a delayed release to the chocolate system. The developed multiscale numerical model provides a design tool to create pore structures in chocolate with optimum melting or solidifying response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available