4.7 Article

Modelling the correlation between building energy ratings and heat-related mortality and morbidity

Journal

SUSTAINABLE CITIES AND SOCIETY
Volume 22, Issue -, Pages 29-39

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scs.2016.01.006

Keywords

Heatwave; Heat stress; Building simulation; Building energy rating; Climate change

Funding

  1. Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Ask authors/readers for more resources

Climate change has led to an increase in the frequency and intensity of heatwaves as well as the risk of heat stress within buildings. To provide habitable indoor conditions without air-conditioning during heatwave, residential building energy efficiency need to be upgraded. The aim of this research is to investigate the possible correlation of building energy rating upgrading with heat-related health hazard during heatwave, with case data drawing from Melbourne, Australia. Using building simulations, indoor heat stress conditions of different energy rated houses were calculated using wet bulb globe temperature and discomfort index under the Melbourne 2009 heatwave conditions. The results showed that during three days heatwave period, residents of 0.9 star energy rated house were exposed to extreme heat stress conditions for almost 25 h compared to only 6 h experienced by the occupants of 5.4 star energy rated house. Several robust empirical relationships were proposed to predict deaths, ambulance calls, emergency department presentations and after hour doctor calls during heatwave. It was concluded that mortality rate from a Melbourne 2009 type, as well as, future more intense heatwave may reduce by 90% if entire existing lower energy star rated houses can be upgraded to minimum 5.4 star energy rating. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available