4.6 Article

Establishing an energy-saving scouring/bleaching one-step process for cotton/spandex fabric using UVA-assisted irradiation

Journal

RSC ADVANCES
Volume 12, Issue 15, Pages 9404-9415

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra00659f

Keywords

-

Funding

  1. Opening Project of Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province [QJRZ1902]
  2. Opening Project of Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation [SDGC2101]
  3. Opening Project of Wuhan Research Center of Eco-dyeing [EDFT2021006]

Ask authors/readers for more resources

This research customized a facile and efficient UVA-assisted scouring/bleaching strategy to reduce the energy and water consumption in a conventional textile industry. The bleaching efficacy under UVA irradiation was explored and compared with different processes. Mathematical modeling was used to investigate the significance of parameters on the whiteness index of fabric. The bleaching mechanism was analyzed using a fluorescence labelling method. The results showed that the UVA-assisted strategy achieved an equivalent effect as conventional methods, with superior bleaching performance and energy conservation. The study demonstrated the practicability and promising prospects of UVA-assisted pre-treatment in enhancing the sustainability of the textile industry.
To reduce the energy and water consumption from a conventional textile industry, a facile and efficient UVA-assisted scouring/bleaching strategy has been customized for cotton/spandex in this research. The bleaching efficacy under UVA irradiation is explored by comparing diverse processes, i.e., Scouring only (Sc.); Conventional scouring and pad-steam bleaching (Sc/Bl(Conv-PS)); Conventional scouring and cold pad-batch bleaching (Sc/Bl(Conv-CPB)); and one or two-step scouring and UVA-assisted bleaching (Sc/Bl(UVA)-I, Sc/Bl(UVA)-II). The significance, interactive effect and optimisation of parameters on the whiteness index (WI) of fabric are investigated through mathematical modelling. The bleaching mechanism is analysed by a fluorescence labelling method. The dyeing and tensile properties of fabrics and the energy conservation during processing are also demonstrated. Results show that Sc/Bl(UVA)-I achieves an equivalent scouring and bleaching effect as Sc/Bl(UVA)-II. A superior bleaching effect of Sc/Bl(UVA)-II over that of Sc/Bl(Conv)-PS reveals the better function of catalytic UVA than conventional steam. Under the theoretical optimal bleaching conditions (H2O2 conc. 42.96 g L-1, pH 10.24 and irradiation time 3.68 h), a calculated highest WI of 77.19 (1.48 times higher than that of untreated fabric) can be achieved based on the mathematical modelling. Through mechanism studies, hydroxyl radicals are confirmed as the main oxidative species taking part in UVA-assisted bleaching and their concentration in simulated bleaching solution dramatically increases upon the introduction of UVA. The fabric treated by Sc/Bl(UVA)-I exhibits an acceptable strength decrease (<10%) and excellent dyeing performance with reactive dyes. The Sc/Bl(UVA)-I strategy enables more than ca. 70% of energy conservation than the Sc/Bl(Conv-PS) process. The encouraging results manifest the practicability and promising prospects of UVA-assisted pre-treatment which contributes to enhancing the sustainability of the textile industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available