4.6 Article

Uncovering the multifaceted roles of nitrogen defects in graphitic carbon nitride for selective photocatalytic carbon dioxide reduction: a density functional theory study

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 24, Issue 18, Pages 11124-11130

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp00466f

Keywords

-

Funding

  1. Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme (FRGS) [FRGS/1/2019/TK02/1005 MUSM/01/1]

Ask authors/readers for more resources

This study systematically unraveled the effect of defect engineering on the properties and catalytic performance of graphitic carbon nitride (g-C3N4). By introducing various defect sites, the study achieved improved charge separation efficiency and CO2 adsorption affinity in g-C3N, providing a more feasible pathway for CO2 reduction.
Surface defect engineering on the nanoscale has attracted extensive research attention lately; however, its role in modulating the properties and catalytic performance of a semiconducting material has not been comprehensively covered. Here, we systematically unraveled the effect of defect engineering towards textural, electronic and optical properties of graphitic carbon nitride (g-C3N4), as well as its photocatalytic mechanism of CO2 reduction using first-principle calculations by density functional theory through the introduction of various defect sites. Among the five unique atoms in g-C3N4, the vacancy site was found to be the most feasible at the two-coordinated nitrogen, N2. By initiating N2 point defects, an asymmetric electron density distribution was engendered around the vacancy region, which resulted in an evolution of semiconducting properties. We also discovered an improved charge separation efficiency and CO2 adsorption affinity in g-C3N4, which rendered a more thermodynamically feasible pathway for CO2 reduction to CO, CH3OH and CH4 fuels. This theoretical finding is hoped to shed light on the importance of the defect engineering strategy towards photocatalytic enhancement in g-C3N4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available