4.5 Article

Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles

Journal

ATMOSPHERIC MEASUREMENT TECHNIQUES
Volume 15, Issue 8, Pages 2591-2606

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/amt-15-2591-2022

Keywords

-

Funding

  1. California Air Resources Board [00010311]
  2. National Oceanic and Atmospheric Administration [NA16OAR4310103, NA17OAR4310007]

Ask authors/readers for more resources

Wildfires in the western US have been increasing in frequency and intensity in recent decades, impacting air quality negatively. Understanding the chemical composition of smoke is crucial for improving predictions of air quality effects and evaluating mitigation strategies. Pattern recognition and classification algorithms show promise in identifying fuel types contributing to smoke samples.
Wildfires have increased in frequency and intensity in the western United States (US) over the past decades, with negative consequences for air quality. Wildfires emit large quantities of particles and gases that serve as air pollutants and their precursors, and can lead to severe air quality conditions over large spatial and long temporal scales. Therefore, characterization of the chemical constituents in smoke as a function of combustion conditions, fuel type and fuel component is an important step towards improving the prediction of air quality effects from fires and evaluating mitigation strategies. Building on the comprehensive characterization of gaseous non-methane organic compounds (NMOCs) identified in laboratory and field studies, a supervised pattern recognition algorithm was developed that successfully identified unique chemical speciation profiles among similar fuel types common in western coniferous forests. The algorithm was developed using laboratory data from single fuel species and tested on simplified synthetic fuel mixtures. The fuel types in the synthetic mixtures were differentiated, but as the relative mixing proportions became more similar, the differentiation became poorer. Using the results from the pattern recognition algorithm, a classification model based on linear discriminant analysis was trained to differentiate smoke samples based on the contribution(s) of dominant fuel type(s). The classification model was applied to field data and, despite the complexity of the contributing fuels and the presence of fuels unknown to the classifier, the dominant sources/fuel types were identified. The pattern recognition and classification algorithms are a promising approach for identifying the types of fuels contributing to smoke samples and facilitating the selection of appropriate chemical speciation profiles for predictive air quality modeling using a highly reduced suite of measured NMOCs. The utility and performance of the pattern recognition and classification algorithms can be improved by expanding the training and test sets to include data from a broader range of single and mixed fuel types.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available