4.7 Article

Turbulence-resolving, two-phase flow simulations of wave-supported gravity flows: A conceptual study

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 121, Issue 12, Pages 8849-8871

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JC012061

Keywords

-

Categories

Funding

  1. Ralph E. Powe Junior Faculty Enhancement Award (ORAU)

Ask authors/readers for more resources

Discoveries over the last three decades have shown that wave-supported gravity flows (WSGFs) are among the participating physical processes that carry substantial amount of fine sediments across low-gradient shelves. Therefore, understanding the full range of mechanisms responsible for such gravity flows is likely to shed light on the dynamics of subaqueous delta and clinoform development. As wave-induced boundary layer turbulence is the major agent to suspend sediments in WSGFs, the scale of WSGFs in the water column is also bounded by the wave-induced boundary layer thickness which is on the order of decimeters. Therefore, in order to explore the details of participating physical mechanisms, especially that due to turbulence-sediment interaction, highly resolved and accurate numerical models or measurements in the laboratory and the field are required. In this study, the dynamics of WSGFs is investigated by using turbulence-resolving, two-phase flow simulations that utilize Direct Numerical Simulations (DNS). The effect of variable sediment loading, slope, and wave orbital velocity is investigated via 21 simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available