4.7 Article

Initial tsunami source estimation by inversion with an intelligent selection of model parameters and time delays

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 121, Issue 1, Pages 441-456

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JC010877

Keywords

tsunami waveform inversion; Tohoku-Oki 2011 tsunami; stochastic optimization; computational intelligence; genetic algorithm; pattern search

Categories

Ask authors/readers for more resources

We propose a method for accurately estimating the initial tsunami source. Our technique is independent of the earthquake parameters, because we only use recorded tsunami waveforms and an auxiliary basis function, instead of a fault model. We first use the measured waveforms to roughly identify the source area using backward propagated travel times, and then infer the initial sea surface deformation through inversion analysis. A computational intelligence approach based on a genetic algorithm combined with a pattern search was used to select appropriate least squares model parameters and time delays. The proposed method significantly reduced the number of parameters and suppressed the negative effect of regularization schemes that decreased the plausibility of the model. Furthermore, the stochastic approach for deriving the time delays is a more flexible strategy for simulating actual phenomena that occur in nature. The selected parameters and time delays increased the accuracy, and the model's ability to reveal the underlying physics associated with the tsunami-generating processes. In this paper, we applied the method to the 2011 Tohoku-Oki tsunami event and examined its effectiveness by comparing the results to those using the conventional method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available