4.2 Article

A highly sensitive SERS substrate based on a mesoporous Ag-TiO2 thin film for the detection of dye molecules

Journal

MATERIALS ADVANCES
Volume 3, Issue 13, Pages 5337-5343

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ma00211f

Keywords

-

Funding

  1. PMRF fellowship of Govt. of India

Ask authors/readers for more resources

This study presents a technique for fast, accurate, and molecular-specific detection of dyes at ultra-trace levels using surface-enhanced Raman spectroscopy (SERS). The researchers explored a highly sensitive Ag-TiO2 thin film with a nanocage structure for SERS applications. The fabricated SERS substrate effectively detected different dyes at low concentrations, demonstrating its potential for practical applications.
We present a fast, accurate, and molecular specific detection technique of dyes at an ultra-trace level using surface-enhanced Raman spectroscopy (SERS). A highly sensitive Ag-TiO2 thin film having a nanocage (NC) structure is explored for SERS applications. The facile fabrication method requires significantly less Ag on the TiO2 nanostructure. The Raman enhancement mechanism of the fabricated film is investigated using two different excitation lasers of 514.5 nm and 785 nm considering both experimental and simulation studies. We obtained a significant enhancement for the 514.5 nm excitation laser as it is closest to the plasmonic resonance wavelength of the fabricated SERS film. We have demonstrated the detection of Rhodamine 6G (R6G) and N719 Ruthenium dyes at various concentrations up to picomolar and nanomolar levels, respectively, using the fabricated SERS substrates. The limits of detection (LOD) of R6G and N719 dyes were calculated to be 3.83 x 10(-12) M and 1.58 x 10(-9) M, respectively. Thus, this systematic study emphasizes that the fabricated SERS substrate effectively detects different dyes at low concentrations, and further presents more opportunities for practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available