4.8 Article

Hydrovoltaic energy harvesting from moisture flow using an ionic polymer-hydrogel-carbon composite

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 15, Issue 6, Pages 2489-2498

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ee00030j

Keywords

-

Funding

  1. General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China [17203520]

Ask authors/readers for more resources

Hydrovoltaic technologies have attracted attention in recent years as a way to generate electricity through the interaction of water with nanostructured materials. A new hydrovoltaic device has been invented that can sustainably produce ultrahigh voltages and has a fast voltage response. It outperforms other moisture-enabled electric generators in power density, adaptability to moisture flow, and simplicity of the device. The device has practical significance as a portable power supply and can recover energy from various real-life scenarios.
Hydrovoltaic technologies have been proposed in recent years to generate electricity by virtue of water interacting with nanostructured materials, such as monolayer graphene and graphene derivatives, as promising renewable energy alternatives. In particular, moisture flow, with natural abundance in daily life, contains tremendous energy but remains unutilized. Here, we invented a new hydrovoltaic device comprising the ionic polymer Nafion and poly(N-isopropylacrylamide) hydrogel, by which an ultrahigh voltage of -1.86 V was reached using one single module in a sustainable manner and its fast voltage response is significantly distinguished from all moisture-enabled electric generators. Our device not only outperforms in power density but also the adaptability to moisture flow and the simplicity of the device, enabling energy recovery in various real-life scenarios from human breath to mechanical water spray and even water-cooling processes. Its practical significance as a portable power supply was demonstrated by charging capacitors and powering electrochromic smart windows without any auxiliary rectifying and amplifying circuits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available