4.6 Article

When ring makes the difference: coordination properties of Cu2+/Cu+ complexes with sulfur-pendant polyazamacrocycles for radiopharmaceutical applications

Journal

NEW JOURNAL OF CHEMISTRY
Volume 46, Issue 21, Pages 10012-10025

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nj01032a

Keywords

-

Funding

  1. Legnaro National Laboratories of the Italian Institute of Nuclear Physics (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro, INFN-LNL, Italy)
  2. National Research, Development and Innovation Office NKFIA (Hungary) [K124544]

Ask authors/readers for more resources

This study synthesized three novel polyazamacrocyclic ligands as potential chelators for medical copper radioisotopes, and investigated their coordination properties with copper in aqueous solution. It was found that TRI4S and TE4S can stabilize both copper oxidation states, making them promising candidates for application in nuclear medicine.
Three polyazamacrocyclic ligands, i.e. 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S) and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S), were considered as potential chelators for the medically relevant copper radioisotopes. The ligands have been synthesized through facile, single-step reactions, and their acidity constants have been measured in aqueous solution at 25 degrees C. The kinetic, thermodynamic, electrochemical and structural properties of their Cu2+ and Cu+ complexes were investigated in aqueous solution at 25 degrees C using spectroscopic (UV-Visible, EPR, NMR) and electrochemical techniques (pH-potentiometric titrations, cyclic voltammetry and electrolysis). TACD3S was demonstrated to be unable to stabilize Cu2+, whereas for TRI4S and TE4S the formation of stable monocupric (CuL2+) and monocuprous (CuL+) complexes was detected. TRI4S coordinates Cu(2+)via a [4N] and a [4N]S array of donor atoms while with TE4S only the latter geometry exists. The thermodynamic stability and the kinetic inertness of the copper complexes formed by TACD3S, TRI4S and TE4S were compared with those previously reported for 1,4,7,10-tetrakis-[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclododecane (DO4S) to unravel the influence of the ring size and the nitrogen donor array on the copper chelation properties of these sulfur-rich macrocycles. The copresence of four nitrogen atoms is an essential feature to allow effective copper coordination when a 12-member ring is employed, as the Cu2+-DO4S complexes were far more stable than those of Cu2+-TACD3S. Furthermore, the larger ring size of TRI4S and TE4S, when compared to DO4S, progressively increases the rate of the Cu2+ complexation reactions but decreases the thermodynamic stability of the Cu2+ complexes. Despite this, the ability of TRI4S and TE4S to stably accommodate both copper oxidation states makes them very attractive for application in nuclear medicine as they could avoid the demetallation after the biologically triggered Cu2+/Cu+ reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available