4.5 Article

Molecular dynamic simulations of the mechanical properties of crystalline/crystalline and crystalline/amorphous nanolayered pillars

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 101, Issue -, Pages 194-200

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2015.01.033

Keywords

Molecular dynamic simulation; Nanolayered pillars; Twin boundaries; Mechanical properties

Funding

  1. National Natural Science Foundation of China [11472149]
  2. National Basic Research Program of China [2011CB610305]

Ask authors/readers for more resources

By properly introducing interfaces and boundaries to nanomaterials, good plasticity can be obtained without sacrificing the strength. Nanolayered crystalline/crystalline (C/C) Cu/Zr and crystalline/amorphous (C/A) Cu/CuZr with and without twin boundaries (TBs) are investigated by large scale molecular dynamic simulations. By characterizing the plastic deformation on atomic scale, the simulation results show that the C/C interfaces, C/A interfaces, grain boundaries (GBs) and TBs have different effects on the deformation behaviors of nanolayered pillars. In C/C pillars, partial dislocations slip in the columnar nano-crystals of Cu layers and diffusion and motion of GBs take place in Zr layers. The dislocations entrapped within the C/C interfaces and the diffusion and motion of GBs in Zr layers lead to strain softening. TBs can effectively improve the yield stress of C/C pillars but not that of C/A pillars. The dominant deformation mechanisms in C/A pillars are the activations of the shear transformation zones (STZs) and the interplay of dislocations and STZs at the interfaces, which, in conjunction with the strain compatibility of the amorphous layers, contribute the less strain softening responses in C/A pillars. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available