4.7 Article

Highly emissive and color-tunable copper-based halide composites for bright white light-emitting diodes

Journal

MATERIALS CHEMISTRY FRONTIERS
Volume 6, Issue 12, Pages 1647-1657

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2qm00172a

Keywords

-

Funding

  1. Natural Science Foundation of Hebei Province [A2021201038]

Ask authors/readers for more resources

In this study, lead-free metal halides were synthesized using a microwave method, and highly efficient light emitters were obtained, leading to stable cold/warm white-light emissions and a high color-rendering index. These copper-based halide composites have great potential for applications in next-generation solid-state lighting.
Lead-free metal halides have gained considerable attention due to their excellent optoelectronic properties; however, the direct synthesis of white light sources remains a challenge for developing high-performance white light-emitting diodes (WLEDs). Herein, we synthesized all-inorganic copper-based ternary halides using a microwave method. Through a strategy of controlling the amount of cuprous iodide (CuI), two highly efficient light emitters, blue-emissive Cs3Cu2I5 and yellow-emissive CsCu2I3, can be obtained. The large Stokes-shifted broadband emission with a relatively long radiative lifetime is ascribed to the self-trapped exciton (STE) formation. The unique negative thermal quenching suggests that carrier transfer from more deeply trapped states to shallowly trapped states is beneficial for enhancing the STE emission. Moreover, with an increased amount of CuI, the as-synthesized Cs3Cu2I5@CsCu2I3 composites exhibit a series of stable cold/warm white-light emissions. The bright WLEDs ranging from cold-white (12810 K) to pure-white (6109 K) and warm-white (4149 K) are displayed by placing the Cs3Cu2I5@CsCu2I3 composite directly onto a commercial ultraviolet chip (310 nm), and an ultra-high color-rendering index (CRI) of 92 is achieved. The results imply that highly emissive and color-tunable copper-based halide composites open the door to explore their potential applications in next-generation solid-state lightings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available