4.8 Article

Dynamic coordination transformation of active sites in single-atom MoS2 catalysts for boosted oxygen evolution catalysis

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 15, Issue 5, Pages 2071-2083

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ee02750f

Keywords

-

Funding

  1. National Natural Science Foundation of China, NSFC [22133005, 21973107, 22103093, 11804351]
  2. Program of Shanghai Academic Research Leader [20XD1404100]
  3. Science and Technology Commission of Shanghai Municipality [21ZR1472900]
  4. Beijing Institute of Technology Teli Young Fellow Project

Ask authors/readers for more resources

This study presents a strategy for designing 3d transition metal-oxygen complex single-atom catalytic sites to achieve high catalytic activity for the oxygen evolution reaction (OER). Through a dynamic coordination transformation, the active sites and adsorption-responsive orbitals are exposed, favoring the adsorption of oxidative intermediates and improving the OER catalytic activity.
The development of low-cost and efficient electrocatalysts for the oxygen evolution reaction (OER) is critical for enhancing the efficiency of the water-splitting reaction. Although MoS2 is a promising hydrogen evolution electrocatalyst, its oxygen evolution activity is significantly poor due to its weak adsorption for oxidative intermediates such as OH* and OOH*. Here, we present a strategy for designing 3d-TM-O-x (x = 3, 6; TM: transition metal) single-atom catalytic sites to achieve high catalytic activity towards the OER through an unprecedented dynamic coordination transformation from [TMO6] to [TMO3]. By using first-principles calculations and molecular dynamic simulations, we predict single 3d-transition metal atoms (3d-TM) co-doped with six oxygen atoms of MoS2 (3d-TMO6@MoS2) with hexa-coordinated TM (TM = Sc, Ti, V, Cr, Mn, Fe and Co) and tri-coordinated TM (TM = Ni, Cu and Zn) structures. Our calculations show that these hexa-coordinated TMs are induced to transform into a tetra-coordinated structure as oxidative intermediates approach. The dynamic single-atom catalytic mechanism makes active sites and adsorption-responsive orbitals exposed, which is favorable to strengthen the adsorption of oxidative intermediates and improve the OER catalytic activity. Comparative calculations demonstrate that TMO6@MoS2 (TM = Fe, Mn and Co) species render better electrocatalytic activity for the OER than benchmark IrO2. Experimental Raman studies verified that FeO6@MoS2 experiences coordination transformation from [TMO6] to [TMO3] during the OER process. The low overpotential of 0.18 V at a current density of 10 mA cm(-2) and good structural stability are consistent with our computational prediction. The present study sheds light on deep understanding of single-atom catalytic structures in transition metal dichalcogenides and the methodology to tune the catalytic activity of single-atom sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available