4.7 Article

Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory

Journal

MATERIALS & DESIGN
Volume 90, Issue -, Pages 453-458

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2015.11.009

Keywords

Fused deposition modelling; Classical laminate theory; Orthotropic mechanical behaviour; Mechanical characterization

Ask authors/readers for more resources

The Fused Deposition Modelling (FDM) has become one of the most used techniques to 3D object rapid prototyping. In this process, the model is built as a layer-by-layer deposition of a feedstock wire. In recent years, the FDM evolved from rapid prototyping technique towards a rapid manufacturing method, changing the main purpose in producing finished components ready for use. Thus, the prediction of the mechanical properties of this new technology has an increasingly important role. Previous papers have highlighted the orthotropic mechanical behaviour of FDM parts showing that the stacking sequence controls the mechanical properties of FDM parts. The aim of this work is to describe the mechanical behaviour of FDM parts by the classical laminate theory (CLT). In order to reach this objective, the values of the elastic modulus in the longitudinal and transverse directions to the fibre (E-1, E-2), the Poisson's modulus (nu(12)) and the shear modulus (G(12)) will be experimentally measured. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available