4.5 Article

Chemical composition, antibiofilm, cytotoxic, and anti-acetylcholinesterase activities of Myrtus communis L. leaves essential oil

Journal

BMC COMPLEMENTARY MEDICINE AND THERAPIES
Volume 22, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12906-022-03583-4

Keywords

Myrtus communis; Essential oil; Antibacterial activity; Biofilm; Biofilm metabolism; Cytotoxic activity; SH-SY5Y cells; Anti-acetylcholinesterase activity

Ask authors/readers for more resources

Myrtle essential oil and its main constituents exhibit antibacterial, anti-biofilm, and anti-acetylcholinesterase activities, suggesting their potential use against resistant pathogenic bacteria and in the treatment of neurological diseases.
Background The potential of essential oils (EOs) and of their principal constituents for eradication of biofilm and at the same time the research of new potential acetylcholinesterase inhibitors is gaining increasing interest in last years. The aims of this study were to determine the chemical composition and to evaluate the antibacterial, cytotoxic, and anti-acetylcholinesterase properties of Myrtus communis leaves essential oil and its main constituents. Methods Essential oil was obtained by hydrodistillation of M. communis L. leaves and was analyzed by GC and GC-MS. The antimicrobial activity was carried out against both gram-negative and gram-positive bacteria. The microdilution method was used to estimate the minimum inhibitory concentrations (MICs). Then, the capacity of essential oil and its main constituent to inhibit biofilm growth, with the method of O'Toole and Kolterand, and the metabolic activity of biofilm cells through the MTT colorimetric method were evaluated at different times. Moreover, was studied the potential cytotoxic activity against SH-SY5Y cell line with MTT assay and the anti-acetylcholinesterase activity using Ellman's assay. Results Myrtenyl-acetate, 1,8 cineole, alpha-pinene, and linalool were the main components in the EO. The myrtle EO, at the minimum tested dose (0.4 mg/ml), inhibited S. aureus biofilm by 42.1% and was capable of inhibiting the biofilm cell metabolism in all tested strains, except Staphylococcus aureus. Moreover, the EO showed good cytotoxic and anti-acetylcholinesterase activities IC50 of 209.1 and 32.8 mu g/ml, respectively. Conclusions The results suggest that myrtle EO and its main constituents could be used as possible products that could act against the resistant pathogenic species E. coli, P. aeruginosa, L. monocytogenes and S. aureus, on the other hand, as possible coadjutants in the treatment of neurological diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available