4.7 Article

Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology

Journal

MATERIALS & DESIGN
Volume 94, Issue -, Pages 17-27

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2016.01.041

Keywords

Additive manufacturing; Electron beam melting; Multi-material; Inconel 718; 316L

Funding

  1. RadiaBeam Systems through Department of Energy [SBIR DE-SC0011826]

Ask authors/readers for more resources

Joining of dissimilar metals using high energy-density beams such as lasers and electron beams offer several advantages including precision, narrow fusion zones, and narrow heat affected zones (HAZ) that consequently result in reduced part distortion when compared to traditional joining processes. When high energy-density beams are combined with the design freedom offered by additive manufacturing (AM), or a layer-by-layer part fabrication process, it becomes possible to manufacture complex multi-material parts with improved joint characteristics resulting from controlled process parameters. Complex multi-material parts can be achieved that have tremendous impact on applications ranging from nuclear power plant components to repair applications. This research explores the feasibility of joining Inconel 718 with 316L Stainless Steel, and vice versa, by utilizing electron beam melting (EBM) additive manufacturing, a class of powder bed fusion technology. The use of this process can help avoid the use of filler materials, provides an evacuated processing environment resulting in limited contamination of oxides and nitrides, and can provide a high quality metallurgical joint while minimizing the thermal damage to surrounding material. Multi-material components were fabricated and the joint interfaces were characterized. Assessments of the interfaces revealed minimized thermal effects from the process and finer weld joints. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available