3.8 Article

Computational models of hemostasis: Degrees of complexity

Journal

APPLICATIONS IN ENGINEERING SCIENCE
Volume 10, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apples.2022.100103

Keywords

Coagulation; Hemostasis; Thrombosis; Computational models; Model design

Funding

  1. Russian Science Foundation [20-45-01014]

Ask authors/readers for more resources

This article reviews the history of studies on blood clotting and the development of mathematical/computational models related to hemostasis and thrombosis. The models have evolved from cascade models to spatially distinct sets of reactions, offering insights into the physiological significance and regulation of hemostasis.
The history of studies on blood clotting goes back to the emergence of civilized society itself. The foundations of the modern scientific study of hemostasis are based on the discovery of erythrocytes in blood in 1674 and, later, that of platelets in 1842. The causes of thrombosis are encapsulated in the Virchow Triad (dated to 1856), which refers, in modern terms, to hypercoagulability, alterations of hemodynamics (stasis), and endothelial injury. The understanding of coagulation, the network of reactions that underlies hemostasis and thrombosis, has evolved from a cascade (in 1964) into spatially distinct sets of reactions dependent on co-factors occurring on different cells in different tissues and linked together by diffusion and flow (as of 2015). Correspondingly, mathematical/computational models for hemostasis and thrombosis (which involve coagulation along with platelet aggregation in the presence of flow) have evolved in design complexity from Continuum temporal (or homogeneous) models to Continuum spatio-temporal models (with or without the flow) and lately into Discrete-Continuum spatio-temporal models with the flow. After a brief listing of the discoveries and historical personae that contributed to the understanding of hemostasis up to the present, the development of mathematical/computational models is traced from the late 1980s when they started gaining importance. Influential models are then highlighted. The models are reviewed in increasing order of design complexity (one of four possible methods of classification). The physiological significance of each and the insights they offer into hemostasis regulation are explained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available