3.8 Review

Charge transport in doped conjugated polymers for organic thermoelectrics

Journal

CHEMICAL PHYSICS REVIEWS
Volume 3, Issue 2, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0080820

Keywords

-

Funding

  1. We gratefully acknowledge financial support from the Swedish Research Council (Grant Nos. 2016-06146 and 2018-03824), the European Unionapos
  2. s Horizon 2020 research and innovation programme under the Marie Sklstrok
  3. odowska-Curie Grant Agreement Nos. 7994 [2016-06146, 2018-03824]
  4. Swedish Research Council [799477, 955837, 754364]
  5. European Union
  6. Knut and Alice Wallenberg Foundation through a Wallenberg Academy Fellowship Prolongation grant [g42T-T]
  7. Carl Zeiss Foundation

Ask authors/readers for more resources

Research on conjugated polymers for thermoelectric applications has made significant progress, particularly in the area of molecular doping for enhanced electrical conductivity. This review summarizes recent developments and strategies in molecular doping of p- and n-type conjugated polymers to improve their electrical conductivity. The impact of the chemical design, processing conditions, and resulting nanostructure on doping efficiency and stability is discussed, along with the interdependence of electrical and thermal transport characteristics.
Research on conjugated polymers for thermoelectric applications has made tremendous progress in recent years, which is accompanied by surging interest in molecular doping as a means to achieve the high electrical conductivities that are required. A detailed understanding of the complex relationship between the doping process, the structural as well as energetic properties of the polymer films, and the resulting thermoelectric behavior is slowly emerging. This review summarizes recent developments and strategies that permit enhancing the electrical conductivity of p- and n-type conjugated polymers via molecular doping. The impact of the chemical design of both the polymer and the dopant, the processing conditions, and the resulting nanostructure on the doping efficiency and stability of the doped state are discussed. Attention is paid to the interdependence of the electrical and thermal transport characteristics of semiconductor host-dopant systems and the Seebeck coefficient. Strategies that permit to improve the thermoelectric performance, such as an uniaxial alignment of the polymer backbone in both bulk and thin film geometries, manipulation of the dielectric constant of the polymer, and the variation of the dopant size, are explored. A combination of theory and experiment is predicted to yield new chemical design principles and processing schemes that will ultimately give rise to the next generation of organic thermoelectric materials. (C) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available