4.8 Article

Mesoporous Silk-Bioactive Glass Nanocomposites as Drug Eluting Multifunctional Conformal Coatings for Improving Osseointegration and Bactericidal Properties of Metal Implants

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 14, Issue 13, Pages 14961-14980

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c00093

Keywords

bioactive glass; silk fibroin; mesoporous; drug delivery; bone tissue engineering; metal implants; surface functionalization

Funding

  1. Department of Biotechnology (DBT) [BT/PR36393/NNT/28/1698/2020]
  2. Department of Science and Technology (DST), Government of India
  3. Ministry of Education (MoE), Government of India

Ask authors/readers for more resources

Successful loading of antibiotics and hormones in mesoporous nanocomposites and fabrication of compatible implant coatings using electrophoretic deposition technique were reported. These coatings exhibited antibacterial efficacy, promoted cell adhesion and osteogenesis, thereby improving implant patency.
Endowing metal implants with multifunctional traits to prevent implant-associated infections and improve osseointegration has become a pivotal facet in orthopedics and dental fixation. Herein, we report the synthesis of mesoporous 70S bioactive glass-silk fibroin nanocomposites inspired by the biomimetic organo-apatites of mineralized collagen. The mesoporous, biomimetic nanocomposites enabled loading of antibiotics (gentamicin and doxycycline) and favored their release in a rapid manner while preserving their bioactivity. Ease in modification of the mesoporous nanocomposites enabled tailoring of 3-(aminopropyl)-triethoxysilane to the silanol network of bioactive glass, which improved the loading capacity of the hydrophobic drug (dexamethasone). The modification favored the slow and sustained release of dexamethasone from the modified mesoporous nanocomposites, which is desired for mediating osteogenesis and immunomodulation. Conformal coatings of these drug-loaded nanocomposites were materialized on stainless-steel implants through a facile electrophoretic deposition (EPD) technique, wherein the deposition yield can be controlled by applied parameters. Antibiotic coatings exhibited antibacterial efficacy with bioactivity retained up to 28 days, while dexamethasone-loaded coatings favored mesenchymal stem cell adhesion and osteoinduction. The immunomodulatory roles were also ascertained, wherein M2 macrophage biasness was favored in dexamethasone-loaded coatings. The versatility of these mesoporous biomimetic nanocomposites guarantee the loading of scenario-specific drugs to aid their local delivery through the conformal EPD coatings developed over metal implants toward improving implant patency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available