4.4 Article

Spectrotemporal Modulation Sensitivity as a Predictor of Speech-Reception Performance in Noise With Hearing Aids

Journal

TRENDS IN HEARING
Volume 20, Issue -, Pages -

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/2331216516670387

Keywords

hearing aids; amplitude modulation; cognitive processing; temporal fine structure; noise

Funding

  1. Linnaeus Centre HEAD excellence center grant from the Swedish Research Council
  2. FORTE

Ask authors/readers for more resources

The audiogram predicts <30% of the variance in speech-reception thresholds (SRTs) for hearing-impaired (HI) listeners fitted with individualized frequency-dependent gain. The remaining variance could reflect suprathreshold distortion in the auditory pathways or nonauditory factors such as cognitive processing. The relationship between a measure of suprathreshold auditory function-spectrotemporal modulation (STM) sensitivity-and SRTs in noise was examined for 154 HI listeners fitted with individualized frequency-specific gain. SRTs were measured for 65-dB SPL sentences presented in speech-weighted noise or four-talker babble to an individually programmed master hearing aid, with the output of an ear-simulating coupler played through insert earphones. Modulation-depth detection thresholds were measured over headphones for STM (2cycles/octave density, 4-Hz rate) applied to an 85-dB SPL, 2-kHz lowpass-filtered pink-noise carrier. SRTs were correlated with both the high-frequency (2-6 kHz) pure-tone average (HFA; R-2 = .31) and STM sensitivity (R-2 = .28). Combined with the HFA, STM sensitivity significantly improved the SRT prediction (Delta R-2 = .13; total R-2 = .44). The remaining unaccounted variance might be attributable to variability in cognitive function and other dimensions of suprathreshold distortion. STM sensitivity was most critical in predicting SRTs for listeners<65 years old or with HFA <53 dB HL. Results are discussed in the context of previous work suggesting that STM sensitivity for low rates and low-frequency carriers is impaired by a reduced ability to use temporal fine-structure information to detect dynamic spectra. STM detection is a fast test of suprathreshold auditory function for frequencies <2 kHz that complements the HFA to predict variability in hearing-aid outcomes for speech perception in noise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available