4.7 Article

Protease supplementation reduced the heat increment of feed and improved energy and nitrogen partitioning in broilers fed maize-based diets with supplemental phytase and xylanase

Journal

ANIMAL NUTRITION
Volume 10, Issue -, Pages 19-25

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.aninu.2021.10.011

Keywords

Exogenous enzyme; Mono-component protease; Net energy; Amino acid

Ask authors/readers for more resources

This experiment investigated the effects of digestible amino acid concentrations and supplemental protease on live performance and energy partitioning in broilers. The results showed that adding protease to diets with reduced amino acid concentrations improved feed conversion ratio and influenced energy utilization.
An experiment was conducted to explore the effects of digestible amino acid (dAA) concentrations and supplemental protease on live performance and energy partitioning in broilers. Ross 308 male broilers (n = 288) were distributed into 24 floor pens and offered 1 of 4 dietary treatments with 6 replicates from 1 to 35 d of age. Dietary treatments consisted of a 2 x 2 factorial arrangement with dAA concentrations (standard and reduced [34 g/kg below standard]) and supplemental protease (without or with) as the main factors. At 1,15, 28, and 35 d of age, feed and broilers were weighed to determine live performance. From 20 to 23 d of age, a total of 32 birds (2 birds/chamber, 4 replicates) were placed in closed-calorimeter chambers to determine respiratory exchange (heat production, HP), apparent metabolisable energy (AME), retained energy (RE), and net energy (NE). From 29 to 35 d of age, supplemental protease in the reduced-dAA diet decreased broiler feed conversion ratio (FCR) by 5.6 points, whereas protease supplementation in the standard-dAA diet increased FCR by 5.8 points. The indirect calorimetry assay revealed that supplemental protease decreased (P < 0.05) the heat increment of feed (HIF) by 0.22 MJ/kg. Also, from 20 to 23 d of age, broilers offered the reduced-dAA diet with supplemental protease had a higher daily body weight gain (BWG) (+10.4%), N intake (+7.1%), and N retention (+8.2%) than those offered the standard-dAA with supplemental protease. Broilers offered the reduced-dAA without supplemental protease exhibited a 3.6% higher AME-to-crude protein (CP) ratio than those offered other treatments. Protease supplementation in the standard-and reduced-dAA diets resulted in 2.7% and 5.6% lower AME intake-to-N retention ratios, respectively, compared with the unsupplemented controls. Reduced-dAA increased (P < 0.05) AME intake (+4.8%), RE (+9.8%), NE intake (+5.8%), NE intake-to-CP ratio (+3.0%), and RE fat-to-RE ratio (+8.6%). Protease supplementation increased (P < 0.05) respiratory quotient (+1.2%) and N retention-to-N intake ratio (+2.2%), NE-to-AME ratio (+1.9%), and reduced HP (-3.6%), heat increment (-7.4%), and NE intake-to-N retention (-2.5%). In conclusion, protease positively affected FCR and energy partitioning in broilers; responses were most apparent in diets with reduced-dAA concentrations. (c) 2022 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available