4.1 Article

Trinitrotoluene and mandarin peels selectively affect lignin-modifying enzyme production in white-rot basidiomycetes

Journal

SPRINGERPLUS
Volume 5, Issue -, Pages -

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1186/s40064-016-1895-0

Keywords

White-rot basidiomycetes; 2, 4, 6-Trinitrotoluene degradation; Laccase; Manganese peroxidase; Enzyme production

Funding

  1. Science & Technology Centre in Ukraine [STCU 3740]

Ask authors/readers for more resources

Five white-rot basidiomycetes (WRB) species have been evaluated for their potential to tolerate and to degrade 0.2 mM 2, 4, 6-trinitrotoluene (TNT) as well as to produce laccase and manganese peroxidase (MnP) in presence of this xenobiotic. The tested fungal strains produced laccase in both glycerol and mandarin peels-containing media, whereas in the glycerol-containing medium only Cerrena unicolor strains and Trametes versicolor BCC 775 secreted MnP. Replacement of glycerol by milled mandarin peels 3-to 45-fold increased laccase activity, promoted C. unicolor strains and T. versicolor MnP secretion and induced this enzyme production by Fomes fomentarius BCC 38 and Funalia trogii BCC 146. Differential response of the WRB strains to the TNT addition was observed. In particular, laccase activity of C. unicolor increased 2- to 3-fold in both media whereas no stimulation of the laccase production was revealed in cultivation of F. fomentarius. TNT practically did not affect the MnP activity. Two strains of C. unicolor followed by T. versicolor producing laccase and MnP almost completely removed 0.2 mM TNT from the synthetic medium. Increase of TNT concentration from 0 to 0.4 mM in the mandarin peels-based medium and from 0 to 0.3 mM in the glycerol-containing medium stimulated C. unicolor BCC 300 laccase production from 92.4 to 240.7 U/ml and from 17.1 to 48.6 U/ml, respectively. This strain has been resistant to the TNT high concentration and has ability to remove 85 % of initial 0.3 mM TNT content during 6 days of the submerged cultivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available