4.6 Article

The harm of class imbalance corrections for risk prediction models: illustration and simulation using logistic regression

Journal

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jamia/ocac093

Keywords

class imbalance; logistic regression; calibration; synthetic minority oversampling technique; undersampling

Funding

  1. Research Foundation--Flanders (FWO) [G097322N]
  2. Internal Funds KU Leuven [C24M/20/064]

Ask authors/readers for more resources

This study examined the effect of correcting class imbalance on the performance of logistic regression models and found that methods such as random undersampling, random oversampling, and SMOTE did not improve model performance and resulted in poorly calibrated models. Imbalance correction did not enhance the ability of the models to distinguish between patients with and without the outcome event.
Objective Methods to correct class imbalance (imbalance between the frequency of outcome events and nonevents) are receiving increasing interest for developing prediction models. We examined the effect of imbalance correction on the performance of logistic regression models. Material and Methods Prediction models were developed using standard and penalized (ridge) logistic regression under 4 methods to address class imbalance: no correction, random undersampling, random oversampling, and SMOTE. Model performance was evaluated in terms of discrimination, calibration, and classification. Using Monte Carlo simulations, we studied the impact of training set size, number of predictors, and the outcome event fraction. A case study on prediction modeling for ovarian cancer diagnosis is presented. Results The use of random undersampling, random oversampling, or SMOTE yielded poorly calibrated models: the probability to belong to the minority class was strongly overestimated. These methods did not result in higher areas under the ROC curve when compared with models developed without correction for class imbalance. Although imbalance correction improved the balance between sensitivity and specificity, similar results were obtained by shifting the probability threshold instead. Discussion Imbalance correction led to models with strong miscalibration without better ability to distinguish between patients with and without the outcome event. The inaccurate probability estimates reduce the clinical utility of the model, because decisions about treatment are ill-informed. Conclusion Outcome imbalance is not a problem in itself, imbalance correction may even worsen model performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available